Movie Modelsο
- class asyncpow.models.movie.RelatedVideoModel(*, url: str, key: str, name: str, size: int, type: Literal['Clip', 'Teaser', 'Trailer', 'Featurette', 'Opening Credits', 'Behind the Scenes', 'Bloopers'], site: Literal['YouTube'])[source]ο
Data class representing a related video.
- url: strο
- key: strο
- name: strο
- size: intο
- type: Literal['Clip', 'Teaser', 'Trailer', 'Featurette', 'Opening Credits', 'Behind the Scenes', 'Bloopers']ο
- site: Literal['YouTube']ο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'key': FieldInfo(annotation=str, required=True), 'name': FieldInfo(annotation=str, required=True), 'site': FieldInfo(annotation=Literal['YouTube'], required=True), 'size': FieldInfo(annotation=int, required=True), 'type': FieldInfo(annotation=Literal['Clip', 'Teaser', 'Trailer', 'Featurette', 'Opening Credits', 'Behind the Scenes', 'Bloopers'], required=True), 'url': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.movie.CollectionModel(*, id: int, name: str, posterPath: str, backdropPath: str)[source]ο
Data class representing a collection.
- id: intο
- name: strο
- posterPath: strο
- backdropPath: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'backdropPath': FieldInfo(annotation=str, required=True), 'id': FieldInfo(annotation=int, required=True), 'name': FieldInfo(annotation=str, required=True), 'posterPath': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.movie.RequestedByModel(*, id: int, email: str, username: str, plexToken: str, plexUsername: str, userType: int, permissions: int, avatar: str, createdAt: str, updatedAt: str, requestCount: int)[source]ο
Data class representing the user who made the request.
- id: intο
- email: strο
- username: strο
- plexToken: strο
- plexUsername: strο
- userType: intο
- permissions: intο
- avatar: strο
- createdAt: strο
- updatedAt: strο
- requestCount: intο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'avatar': FieldInfo(annotation=str, required=True), 'createdAt': FieldInfo(annotation=str, required=True), 'email': FieldInfo(annotation=str, required=True), 'id': FieldInfo(annotation=int, required=True), 'permissions': FieldInfo(annotation=int, required=True), 'plexToken': FieldInfo(annotation=str, required=True), 'plexUsername': FieldInfo(annotation=str, required=True), 'requestCount': FieldInfo(annotation=int, required=True), 'updatedAt': FieldInfo(annotation=str, required=True), 'userType': FieldInfo(annotation=int, required=True), 'username': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.movie.ModifiedByModel(*, id: int, email: str, username: str, plexToken: str, plexUsername: str, userType: int, permissions: int, avatar: str, createdAt: str, updatedAt: str, requestCount: int)[source]ο
Data class representing the user who modified the item.
- id: intο
- email: strο
- username: strο
- plexToken: strο
- plexUsername: strο
- userType: intο
- permissions: intο
- avatar: strο
- createdAt: strο
- updatedAt: strο
- requestCount: intο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'avatar': FieldInfo(annotation=str, required=True), 'createdAt': FieldInfo(annotation=str, required=True), 'email': FieldInfo(annotation=str, required=True), 'id': FieldInfo(annotation=int, required=True), 'permissions': FieldInfo(annotation=int, required=True), 'plexToken': FieldInfo(annotation=str, required=True), 'plexUsername': FieldInfo(annotation=str, required=True), 'requestCount': FieldInfo(annotation=int, required=True), 'updatedAt': FieldInfo(annotation=str, required=True), 'userType': FieldInfo(annotation=int, required=True), 'username': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.movie.RequestModel(*, id: int, status: int, media: str, createdAt: str, updatedAt: str, requestedBy: RequestedByModel, modifiedBy: ModifiedByModel, is4k: bool, serverId: int, profileId: int, rootFolder: str)[source]ο
Data class representing a request.
- id: intο
- status: intο
- media: strο
- createdAt: strο
- updatedAt: strο
- requestedBy: RequestedByModelο
- modifiedBy: ModifiedByModelο
- is4k: boolο
- serverId: intο
- profileId: intο
- rootFolder: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'createdAt': FieldInfo(annotation=str, required=True), 'id': FieldInfo(annotation=int, required=True), 'is4k': FieldInfo(annotation=bool, required=True), 'media': FieldInfo(annotation=str, required=True), 'modifiedBy': FieldInfo(annotation=ModifiedByModel, required=True), 'profileId': FieldInfo(annotation=int, required=True), 'requestedBy': FieldInfo(annotation=RequestedByModel, required=True), 'rootFolder': FieldInfo(annotation=str, required=True), 'serverId': FieldInfo(annotation=int, required=True), 'status': FieldInfo(annotation=int, required=True), 'updatedAt': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.movie.MovieDetailsModel(*, id: int, adult: bool, backdropPath: str, posterPath: str, budget: int, genres: list[GenreModel], homepage: str, originalLanguage: str, originalTitle: str, overview: str, popularity: float, productionCompanies: list[ProductionCompanyModel], productionCountries: list[ProductionCountryModel], releaseDate: str, releases: dict, revenue: int, runtime: int, spokenLanguages: list[SpokenLanguagesModelMovie], status: str, tagline: str, title: str, video: bool, voteAverage: float, voteCount: int, externalIds: ExternalIdsModel, watchProviders: list[WatchProviderModel], keywords: list[KeywordModel], relatedVideos: list[RelatedVideoModel], credits: CreditModel, imdbId: str | None = None, collection: CollectionModel | None = None)[source]ο
Data class representing a movie model.
- id: intο
- adult: boolο
- backdropPath: strο
- posterPath: strο
- budget: intο
- genres: list[GenreModel]ο
- homepage: strο
- originalLanguage: strο
- originalTitle: strο
- overview: strο
- popularity: floatο
- productionCompanies: list[ProductionCompanyModel]ο
- productionCountries: list[ProductionCountryModel]ο
- releaseDate: strο
- releases: dictο
- revenue: intο
- runtime: intο
- spokenLanguages: list[SpokenLanguagesModelMovie]ο
- status: strο
- tagline: strο
- title: strο
- video: boolο
- voteAverage: floatο
- voteCount: intο
- externalIds: ExternalIdsModelο
- watchProviders: list[WatchProviderModel]ο
- keywords: list[KeywordModel]ο
- credits: CreditModelο
- imdbId: str | Noneο
- collection: CollectionModel | Noneο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'adult': FieldInfo(annotation=bool, required=True), 'backdropPath': FieldInfo(annotation=str, required=True), 'budget': FieldInfo(annotation=int, required=True), 'collection': FieldInfo(annotation=Union[CollectionModel, NoneType], required=False), 'credits': FieldInfo(annotation=CreditModel, required=True), 'externalIds': FieldInfo(annotation=ExternalIdsModel, required=True), 'genres': FieldInfo(annotation=list[GenreModel], required=True), 'homepage': FieldInfo(annotation=str, required=True), 'id': FieldInfo(annotation=int, required=True), 'imdbId': FieldInfo(annotation=Union[str, NoneType], required=False), 'keywords': FieldInfo(annotation=list[KeywordModel], required=True), 'originalLanguage': FieldInfo(annotation=str, required=True), 'originalTitle': FieldInfo(annotation=str, required=True), 'overview': FieldInfo(annotation=str, required=True), 'popularity': FieldInfo(annotation=float, required=True), 'posterPath': FieldInfo(annotation=str, required=True), 'productionCompanies': FieldInfo(annotation=list[ProductionCompanyModel], required=True), 'productionCountries': FieldInfo(annotation=list[ProductionCountryModel], required=True), 'relatedVideos': FieldInfo(annotation=list[RelatedVideoModel], required=True), 'releaseDate': FieldInfo(annotation=str, required=True), 'releases': FieldInfo(annotation=dict, required=True), 'revenue': FieldInfo(annotation=int, required=True), 'runtime': FieldInfo(annotation=int, required=True), 'spokenLanguages': FieldInfo(annotation=list[SpokenLanguagesModelMovie], required=True), 'status': FieldInfo(annotation=str, required=True), 'tagline': FieldInfo(annotation=str, required=True), 'title': FieldInfo(annotation=str, required=True), 'video': FieldInfo(annotation=bool, required=True), 'voteAverage': FieldInfo(annotation=float, required=True), 'voteCount': FieldInfo(annotation=int, required=True), 'watchProviders': FieldInfo(annotation=list[WatchProviderModel], required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο