Common Modelsο
- class asyncpow.models.common.PageInfoModel(*, page: int, pages: int, results: int, pageSize: int)[source]ο
Data class representing page information.
As per code
- page: intο
- pages: intο
- results: intο
- pageSize: intο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'page': FieldInfo(annotation=int, required=True), 'pageSize': FieldInfo(annotation=int, required=True), 'pages': FieldInfo(annotation=int, required=True), 'results': FieldInfo(annotation=int, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.PaginatedResponseModel(*, pageInfo: PageInfoModel)[source]ο
Data class representing page information.
As per code
- pageInfo: PageInfoModelο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'pageInfo': FieldInfo(annotation=PageInfoModel, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.CastModel(*, id: int, castId: int | None = None, character: str, creditId: str, gender: int, name: str, order: int, profilePath: str | None)[source]ο
Data class representing a cast member.
- id: intο
- castId: int | Noneο
- character: strο
- creditId: strο
- gender: intο
- name: strο
- order: intο
- profilePath: str | Noneο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'castId': FieldInfo(annotation=Union[int, NoneType], required=False), 'character': FieldInfo(annotation=str, required=True), 'creditId': FieldInfo(annotation=str, required=True), 'gender': FieldInfo(annotation=int, required=True), 'id': FieldInfo(annotation=int, required=True), 'name': FieldInfo(annotation=str, required=True), 'order': FieldInfo(annotation=int, required=True), 'profilePath': FieldInfo(annotation=Union[str, NoneType], required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.CrewModel(*, id: int, creditId: str | None = None, gender: int, name: str, job: str, department: str, profilePath: str | None)[source]ο
Data class representing a crew member.
- id: intο
- creditId: str | Noneο
- gender: intο
- name: strο
- job: strο
- department: strο
- profilePath: str | Noneο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'creditId': FieldInfo(annotation=Union[str, NoneType], required=False), 'department': FieldInfo(annotation=str, required=True), 'gender': FieldInfo(annotation=int, required=True), 'id': FieldInfo(annotation=int, required=True), 'job': FieldInfo(annotation=str, required=True), 'name': FieldInfo(annotation=str, required=True), 'profilePath': FieldInfo(annotation=Union[str, NoneType], required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.CreditModel(*, cast: list[CastModel], crew: list[CrewModel])[source]ο
Data class representing Credits
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'cast': FieldInfo(annotation=list[CastModel], required=True), 'crew': FieldInfo(annotation=list[CrewModel], required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.GenreModel(*, id: int, name: str)[source]ο
Data class representing a movie genre.
- id: intο
- name: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'id': FieldInfo(annotation=int, required=True), 'name': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.SpokenLanguagesModelTv(*, englishName: str, iso_639_1: str, name: str)[source]ο
Data class representing a spoken language.
- englishName: strο
- iso_639_1: strο
- name: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'englishName': FieldInfo(annotation=str, required=True), 'iso_639_1': FieldInfo(annotation=str, required=True), 'name': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.SpokenLanguagesModelMovie(*, english_name: str, iso_639_1: str, name: str)[source]ο
Data class representing a spoken language.
- english_name: strο
- iso_639_1: strο
- name: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'english_name': FieldInfo(annotation=str, required=True), 'iso_639_1': FieldInfo(annotation=str, required=True), 'name': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.ExternalIdsModel(*, facebookId: str | None = None, freebaseId: str | None = None, freebaseMid: str | None = None, imdbId: str | None = None, instagramId: str | None = None, tvdbId: int | None = None, tvrageId: int | None = None, twitterId: str | None = None)[source]ο
Data class representing external IDs.
- facebookId: str | Noneο
- freebaseId: str | Noneο
- freebaseMid: str | Noneο
- imdbId: str | Noneο
- instagramId: str | Noneο
- tvdbId: int | Noneο
- tvrageId: int | Noneο
- twitterId: str | Noneο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'facebookId': FieldInfo(annotation=Union[str, NoneType], required=False), 'freebaseId': FieldInfo(annotation=Union[str, NoneType], required=False), 'freebaseMid': FieldInfo(annotation=Union[str, NoneType], required=False), 'imdbId': FieldInfo(annotation=Union[str, NoneType], required=False), 'instagramId': FieldInfo(annotation=Union[str, NoneType], required=False), 'tvdbId': FieldInfo(annotation=Union[int, NoneType], required=False), 'tvrageId': FieldInfo(annotation=Union[int, NoneType], required=False), 'twitterId': FieldInfo(annotation=Union[str, NoneType], required=False)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.KeywordModel(*, id: int, name: str)[source]ο
Data class representing a Keyword
- id: intο
- name: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'id': FieldInfo(annotation=int, required=True), 'name': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.WatchProviderDetailsModel(*, displayPriority: int, logoPath: str, id: int, name: str)[source]ο
Data class representing a watch provider details.
- displayPriority: intο
- logoPath: strο
- id: intο
- name: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'displayPriority': FieldInfo(annotation=int, required=True), 'id': FieldInfo(annotation=int, required=True), 'logoPath': FieldInfo(annotation=str, required=True), 'name': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.WatchProviderModel(*, iso_3166_1: str, link: str, buy: list[WatchProviderDetailsModel], flatrate: list[dict])[source]ο
Data class representing a watch provider.
- iso_3166_1: strο
- link: strο
- buy: list[WatchProviderDetailsModel]ο
- flatrate: list[dict]ο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'buy': FieldInfo(annotation=list[WatchProviderDetailsModel], required=True), 'flatrate': FieldInfo(annotation=list[dict], required=True), 'iso_3166_1': FieldInfo(annotation=str, required=True), 'link': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.ProductionCompanyModel(*, id: int, logoPath: str | None, originCountry: str, name: str)[source]ο
Data class representing a production company.
- id: intο
- logoPath: str | Noneο
- originCountry: strο
- name: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'id': FieldInfo(annotation=int, required=True), 'logoPath': FieldInfo(annotation=Union[str, NoneType], required=True), 'name': FieldInfo(annotation=str, required=True), 'originCountry': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.ProductionCountryModel(*, iso_3166_1: str, name: str)[source]ο
Data class representing a production country.
- iso_3166_1: strο
- name: strο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'iso_3166_1': FieldInfo(annotation=str, required=True), 'name': FieldInfo(annotation=str, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο
- class asyncpow.models.common.SeasonModel(*, airDate: str | None = None, id: int, episodeCount: int, name: str, overview: str, posterPath: str | None = None, seasonNumber: int)[source]ο
Data class representing a Season.
- airDate: str | Noneο
- id: intο
- episodeCount: intο
- name: strο
- overview: strο
- posterPath: str | Noneο
- seasonNumber: intο
- classmethod construct(_fields_set: set[str] | None = None, **values: Any) Model ο
- copy(*, include: AbstractSetIntStr | MappingIntStrAny | None = None, exclude: AbstractSetIntStr | MappingIntStrAny | None = None, update: Dict[str, Any] | None = None, deep: bool = False) Model ο
Returns a copy of the model.
- !!! warning βDeprecatedβ
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`py data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include β Optional set or mapping specifying which fields to include in the copied model.
exclude β Optional set or mapping specifying which fields to exclude in the copied model.
update β Optional dictionary of field-value pairs to override field values in the copied model.
deep β If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- dict(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False) Dict[str, Any] ο
- classmethod from_orm(obj: Any) Model ο
- json(*, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, encoder: Callable[[Any], Any] | None = PydanticUndefined, models_as_dict: bool = PydanticUndefined, **dumps_kwargs: Any) str ο
- model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}ο
A dictionary of computed field names and their corresponding ComputedFieldInfo objects.
- model_config: ClassVar[ConfigDict] = {}ο
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set: set[str] | None = None, **values: Any) Model ο
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed. Behaves as if Config.extra = βallowβ was set since it adds all passed values
- Parameters:
_fields_set β The set of field names accepted for the Model instance.
values β Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- model_copy(*, update: dict[str, Any] | None = None, deep: bool = False) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#model_copy
Returns a copy of the model.
- Parameters:
update β Values to change/add in the new model. Note: the data is not validated before creating the new model. You should trust this data.
deep β Set to True to make a deep copy of the model.
- Returns:
New model instance.
- model_dump(*, mode: Literal['json', 'python'] | str = 'python', include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) dict[str, Any] ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode β The mode in which to_python should run. If mode is βjsonβ, the output will only contain JSON serializable types. If mode is βpythonβ, the output may contain non-JSON-serializable Python objects.
include β A list of fields to include in the output.
exclude β A list of fields to exclude from the output.
by_alias β Whether to use the fieldβs alias in the dictionary key if defined.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A dictionary representation of the model.
- model_dump_json(*, indent: int | None = None, include: IncEx = None, exclude: IncEx = None, by_alias: bool = False, exclude_unset: bool = False, exclude_defaults: bool = False, exclude_none: bool = False, round_trip: bool = False, warnings: bool = True) str ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/serialization/#modelmodel_dump_json
Generates a JSON representation of the model using Pydanticβs to_json method.
- Parameters:
indent β Indentation to use in the JSON output. If None is passed, the output will be compact.
include β Field(s) to include in the JSON output.
exclude β Field(s) to exclude from the JSON output.
by_alias β Whether to serialize using field aliases.
exclude_unset β Whether to exclude fields that have not been explicitly set.
exclude_defaults β Whether to exclude fields that are set to their default value.
exclude_none β Whether to exclude fields that have a value of None.
round_trip β If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings β Whether to log warnings when invalid fields are encountered.
- Returns:
A JSON string representation of the model.
- property model_extra: dict[str, Any] | Noneο
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to βallowβ.
- model_fields: ClassVar[dict[str, FieldInfo]] = {'airDate': FieldInfo(annotation=Union[str, NoneType], required=False), 'episodeCount': FieldInfo(annotation=int, required=True), 'id': FieldInfo(annotation=int, required=True), 'name': FieldInfo(annotation=str, required=True), 'overview': FieldInfo(annotation=str, required=True), 'posterPath': FieldInfo(annotation=Union[str, NoneType], required=False), 'seasonNumber': FieldInfo(annotation=int, required=True)}ο
Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].
This replaces Model.__fields__ from Pydantic V1.
- property model_fields_set: set[str]ο
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}', schema_generator: type[~pydantic.json_schema.GenerateJsonSchema] = <class 'pydantic.json_schema.GenerateJsonSchema'>, mode: ~typing.Literal['validation', 'serialization'] = 'validation') dict[str, Any] ο
Generates a JSON schema for a model class.
- Parameters:
by_alias β Whether to use attribute aliases or not.
ref_template β The reference template.
schema_generator β To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode β The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- classmethod model_parametrized_name(params: tuple[type[Any], ...]) str ο
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params β Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError β Raised when trying to generate concrete names for non-generic models.
- model_post_init(_BaseModel__context: Any) None ο
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- classmethod model_rebuild(*, force: bool = False, raise_errors: bool = True, _parent_namespace_depth: int = 2, _types_namespace: dict[str, Any] | None = None) bool | None ο
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force β Whether to force the rebuilding of the model schema, defaults to False.
raise_errors β Whether to raise errors, defaults to True.
_parent_namespace_depth β The depth level of the parent namespace, defaults to 2.
_types_namespace β The types namespace, defaults to None.
- Returns:
Returns None if the schema is already βcompleteβ and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- classmethod model_validate(obj: Any, *, strict: bool | None = None, from_attributes: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate a pydantic model instance.
- Parameters:
obj β The object to validate.
strict β Whether to enforce types strictly.
from_attributes β Whether to extract data from object attributes.
context β Additional context to pass to the validator.
- Raises:
ValidationError β If the object could not be validated.
- Returns:
The validated model instance.
- classmethod model_validate_json(json_data: str | bytes | bytearray, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Usage docs: https://docs.pydantic.dev/2.6/concepts/json/#json-parsing
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data β The JSON data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- Raises:
ValueError β If json_data is not a JSON string.
- classmethod model_validate_strings(obj: Any, *, strict: bool | None = None, context: dict[str, Any] | None = None) Model ο
Validate the given object contains string data against the Pydantic model.
- Parameters:
obj β The object contains string data to validate.
strict β Whether to enforce types strictly.
context β Extra variables to pass to the validator.
- Returns:
The validated Pydantic model.
- classmethod parse_file(path: str | Path, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod parse_obj(obj: Any) Model ο
- classmethod parse_raw(b: str | bytes, *, content_type: str | None = None, encoding: str = 'utf8', proto: DeprecatedParseProtocol | None = None, allow_pickle: bool = False) Model ο
- classmethod schema(by_alias: bool = True, ref_template: str = '#/$defs/{model}') Dict[str, Any] ο
- classmethod schema_json(*, by_alias: bool = True, ref_template: str = '#/$defs/{model}', **dumps_kwargs: Any) str ο
- classmethod update_forward_refs(**localns: Any) None ο
- classmethod validate(value: Any) Model ο